Computationally optimized ECoG stimulation with local safety constraints.
نویسندگان
چکیده
Direct stimulation of the cortical surface is used clinically for cortical mapping and modulation of local activity. Future applications of cortical modulation and brain-computer interfaces may also use cortical stimulation methods. One common method to deliver current is through electrocorticography (ECoG) stimulation in which a dense array of electrodes are placed subdurally or epidurally to stimulate the cortex. However, proximity to cortical tissue limits the amount of current that can be delivered safely. It may be desirable to deliver higher current to a specific local region of interest (ROI) while limiting current to other local areas more stringently than is guaranteed by global safety limits. Two commonly used global safety constraints bound the total injected current and individual electrode currents. However, these two sets of constraints may not be sufficient to prevent high current density locally (hot-spots). In this work, we propose an efficient approach that prevents current density hot-spots in the entire brain while optimizing ECoG stimulus patterns for targeted stimulation. Specifically, we maximize the current along a particular desired directional field in the ROI while respecting three safety constraints: one on the total injected current, one on individual electrode currents, and the third on the local current density magnitude in the brain. This third set of constraints creates a computational barrier due to the huge number of constraints needed to bound the current density at every point in the entire brain. We overcome this barrier by adopting an efficient two-step approach. In the first step, the proposed method identifies the safe brain region, which cannot contain any hot-spots solely based on the global bounds on total injected current and individual electrode currents. In the second step, the proposed algorithm iteratively adjusts the stimulus pattern to arrive at a solution that exhibits no hot-spots in the remaining brain. We report on simulations on a realistic finite element (FE) head model with five anatomical ROIs and two desired directional fields. We also report on the effect of ROI depth and desired directional field on the focality of the stimulation. Finally, we provide an analysis of optimization runtime as a function of different safety and modeling parameters. Our results suggest that optimized stimulus patterns tend to differ from those used in clinical practice.
منابع مشابه
A New Nonlinear Autoregressive Exogenous (NARX)-Based Intra-Spinal Stimulation Approach to Decode Brain Electrical Activity for Restoration of Leg Movement in Spinally-Injured Rabbits
This study aims at investigation of stimulation by using intra-spinal signals decoded from electrocorticography (ECoG) assessments to restore the movements of the leg in an animal model of spinal cord injury (SCI). The present work comprised of three steps. First, ECoG signals and the associated leg joint changes (hip, knee, and ankle) in sedated healthy rabbits were recorded in different trial...
متن کاملSlope Stability Analysis Using a Self-Adaptive Genetic Algorithm
This paper introduces a methodology for soil slope stability analysis based on optimization, limit equilibrium principles and method of slices. In this study, the slope stability analysis problem is transformed into a constrained nonlinear optimization problem. To solve that, a Self-Adaptive Genetic Algorithm (GA) is utilized. In this study, the slope stability safety factors are the objective ...
متن کاملController Placement in Software Defined Network using Iterated Local Search
Software defined network is a new computer network architecture who separates controller and data layer in network devices such as switches and routers. By the emerge of software defined networks, a class of location problems, called controller placement problem, has attracted much more research attention. The task in the problem is to simultaneously find optimal number and location of controll...
متن کاملA Nurse Scheduling Model under Real Life Constraints
Background and Objectives: In this paper, a real life nurse scheduling model is described based on the conditions in Iranian hospitals such as monthly shift rotation, consecutive morning and evening shifts and consecutive evening and night shift. Methods: The developed model considers both hospital constraints and nurses’ preferences. Hospital constraints include assigning adequate qualifie...
متن کاملOptimization of focality and direction in dense electrode array transcranial direct current stimulation (tDCS).
OBJECTIVE Transcranial direct current stimulation (tDCS) aims to alter brain function non-invasively via electrodes placed on the scalp. Conventional tDCS uses two relatively large patch electrodes to deliver electrical current to the brain region of interest (ROI). Recent studies have shown that using dense arrays containing up to 512 smaller electrodes may increase the precision of targeting ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- NeuroImage
دوره 173 شماره
صفحات -
تاریخ انتشار 2018